A model of fibroblast motility on substrates with different rigidities.

نویسندگان

  • Irina V Dokukina
  • Maria E Gracheva
چکیده

To function efficiently in the body, the biological cells must have the ability to sense the external environment. Mechanosensitivity toward the extracellular matrix was identified as one of the sensing mechanisms affecting cell behavior. It was shown experimentally that a fibroblast cell prefers locomoting over the stiffer substrate when given a choice between a softer and a stiffer substrate. In this article, we develop a discrete model of fibroblast motility with substrate-rigidity sensing. Our model allows us to understand the interplay between the cell-substrate sensing and the cell biomechanics. The model cell exhibits experimentally observed substrate rigidity sensing, which allows us to gain additional insights into the cell mechanosensitivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients.

Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior-in and of itself-results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic...

متن کامل

Evaluation of Price Setting Models in Iran’s Economy (DSGE Approach)

 Despite the consensus on the importance of nominal rigidities, there is no general agreement among monetary economists regarding the most appropriate and consistent pricing model that must be used to assess the effects of monetary policies in the economy. Due to the lack of empirical evidence with relation to the pricing behavior of Iranian firms, there is no general agreement on how to introd...

متن کامل

The Role of Mechanical Rigidity in Cell Motility and the Progression of Cancer Metastases in Bone

This study measured the effects of differing scaffold rigidities on cell motility through whole cell population and individual cell tracking. Previous studies by other groups studying tissue rigidity used 2-dimensional polymer scaffolds as well as Matrigel as a template for in vitro bone research [8, 11]; however, all studies were conducted with low moduli scaffolds, but we used both 2and 3-dim...

متن کامل

Phenomenological modeling of durotaxis.

Cells exhibit qualitatively different behaviors on substrates with different rigidities. The fact that cells are more polarized on the stiffer substrate motivates us to construct a two-dimensional cell with the distribution of focal adhesions dependent on substrate rigidities. This distribution affects the forces exerted by the cell and thereby determines its motion. Our model reproduces the ex...

متن کامل

The Effect of Fibroblast Growth Factor 21 on a Cellular Model of Alzheimer's Disease with Emphasis on Cell Viability and Mitochondrial Membrane Potential

Background and Objective: Alzheimer’s disease (AD) is a neurodegenerative disorder which is associated with extracellular accumulation of amyloid beta (Aβ) plaques. AD is accompanied by mitochondrial dysfunction and energy metabolism reduction. Fibroblast growth factor 21 (FGF21) is an endogenous polypeptide which its beneficial effects have been demonstrated on mitochondrial function, energy m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 98 12  شماره 

صفحات  -

تاریخ انتشار 2010